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The basic model problem of separation as predicted by the time-mean boundary- 
layer equations is studied, with the Cebeci-Smith model for turbulent stresses. The 
changes between laminar and turbulent flow are investigated by means of a 
turbulence ‘factor’ which increases from zero for laminar flow to unity for the fully 
turbulent regime. With an attached-flow starting point, a small increase in the 
turbulence factor above zero is found to drive the separation singularity towards the 
trailing edge or rear stagnation point for flow past a circular cylinder, according to 
both computations and analysis. A separated-flow starting point is found t o  produce 
analogous behaviour for the separation point. These findings lead to the suggestion 
that large-scale separation need not occur a t  all in the fully turbulent regime a t  
sufficiently high Reynolds number ; instead, separation is of small scale, confined 
near the trailing edge. Comments on the genera1it.y of this suggestion are presented, 
along with some supporting evidence from other computations. Further, the small 
scale involved theoretically has values which seem reasonable in practical terms. 

1. Introduction 
Turbulent separating flows in practice tend to be highly unsteady (see e.g. 

Bogdonoff 1987), with the flow a t  any point changing rapidly, and by significant 
amounts, from one instant to the next. Despite the resulting doubts on the relevance 
of time-mean quantities, turbulent boundary layers are nevertheless broadly 
accepted to  be less prone to  separate than the corresponding laminar ones, owing to 
the enhanced wall shear stresses generally. Hcre, to help quantify that further, and 
given the limited extent of analysis so far, we take the time-mean equations and 
examine the flow processes involved near separation, using a particular basic closure 
model and assuming the turbulent boundary layer to  be fully developed upstream. 
Also, the ensemble-averaged flow is modelled as planar and steady, for an 
incompressible fluid, so that the essential features can be explored. 

Experimental measurements of turbulent Separation are understandably difficult 
to  make, especially within the short scales near separation, owing to the unsteadiness 
above, hindering precise measurements of time-mean quantities. One study to note 
for an extensive investigation of larger-scale properties is by Patrick (1985), 
concerning turbulent separation and reattachment on a flat plate. Other experiments 
on the character of turbulent separation include those of Simpson, Strickland & Barr 
(1977) and Simpson, Chew & Shivaprasad (1981), which suggest that  logarithmic 
layers are absent a t  the mean-flow separation; see also Stratford (1959) and the 
present work below. Thompson & Whitelaw (1985) show the importance also of 
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normal stresses there. Other works include Achenbach (1971), on the flow past rough 
circular cylinders, and Trupp, Azad & Kassab (1986), Dengel & Fernholz (1990). 

On the theoretical side, for the attached unperturbed turbulent boundary layer, 
Mellor (1972), Bush & Fendell (1972) and Fendell (1972) consider the asymptotic 
structure at large Reynolds numbers Re, using a general form for the turbulence 
closure consistent with a two-tiered boundary layer. Deriat & Guiraud (1986) study 
the asymptotics of turbulence in a boundary-layer structure and make some 
interesting remarks on the suitability of specific turbulence-closure models. The two- 
tiered work is followed and extended significantly by Melnik and his co-workers 
(Melnik, Chow & Mead 1977 ; Melnik 1980, 1987 ; Melnik & Grossman 1982) for the 
examination of trailing-edge motions, transonic conditions and interactive effects, 
the latter also being studied by Sykes (1980). Flow in the boundary layer’s inner tier, 
including time-dependence, is investigated by Walker & Abbott (1977), Walker & 
Scharnhorst (1977), and Walker, Scharnhorst & Weigand (1986), the first in 
particular emphasizing the necessity of understanding theoretically the two- 
dimensional time-mean case in order to provide a basis for more complex flows. 
Proposals for the structure of turbulent separation are put forward by Sychev & 
Sychev (1980) and Sychev (1987) and are discussed later in this paper. Again, a 
family of velocity profiles for separated flows is suggested by Lock (1987), using 
various shape factors. Some more general ideas regarding the importance of the 
details of the turbulence closure model in asymptotic analysis are given by Gersten 
(1987), .including the suggestion that the effects of such specific details on the main 
flow properties are secondary (see also our views below). Of interest as regards linear 
analysis in stratified turbulent flow are papers by Hunt, Leibovich & Richards 
(1988), Hunt & Richards (1984). (In anticipation of what follows, and prompted by 
a comment from J. C. R. Hunt, we note that linear analysis and the current 
nonlinear theory agree that the phase of the surface shear stress tends to that of the 
external pressure or mean flow in turbulent boundary layers as opposed to being 
controlled by the pressure gradient in laminar layers; see Ackenbach’s 1971 
experiments.) In  work related a little to the present study, the trailing-edge and 
wake flow is considered theoretically by Alber (1980), Bogucz & Walker (1987) 
and Neish & Smith (1988), the latter’s predictions comparing well with experiments 
and computations. 

Computationally, there have been many attempts a t  comparing various closure 
models, e.g. zero- and two-equation, by computing flow solutions using each in turn 
and comparing the results; see e.g. Johnson & King (1985), Escande & Cambier 
(1985), Degrez & Vandromme (1985). The comparisons are mixed, producing no firm 
general conclusions. There appear to be few studies for the separation case and the 
effects of increasing turbulence factor in the boundary layer or indeed of the 
Reynolds number, apart from Barnett & Carter’s (1986) Reynolds-number study for 
airfoils and bluff bodies using interactive boundary-layer theory. Flat-plate and 
wake flows are addressed numerically by Cebeci et al. (1979), among others, using a 
set of classical boundary-layer equations and the Cebeci-Smith (1974) turbulence 
model, modified for the wake part of the calculation. Other related studies of interest 
are by Inouye, Marvin & Sheaffer (1972), Cebeci, Stewartson & Whitelaw (1984), 
Bradshaw (1970), Andreopoulos & Bradshaw (1980), Chevray & Kovasznay (1969), 
Pot (1979), Ramaprian, Pate1 & Sastry (1982) and Hoffman & Ny (1978). 

Concerning the development of a turbulent-separation theory, then, there appear 
to be few or no direct comparisons possible with either computation or experiment, 
as there are apparently little detailed data available. Only qualitative general 
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comparison can be made, such as thc possible development of a Coles (1956) wake 
form in the velocity profile near Separation and the movement of the separation point 
downstream with increasing Reynolds number (e.g. Barnett & Carter). The present 
theoretical study is therefore aimed at providing some comparisons, and questions, 
on the flow structure near separation, and yielding predictions, for comparisons with 
more comprehensive experimental and numerical studies, as regards Reynolds- 
number effects in particular. 

This paper considers whether the choice of a specific representative turbulence 
model, in this case a relatively simple algebraic Cebeci-Smith model, may account 
adequately for a turbulent boundary layer as i t  approaches separation. There have 
been doubts that  such a simple closure can describe separating flow with any physical 
validity, because the possibly new processes that govern the separation, involving 
turbulent kinetic energy production, may require severe modification of the 
turbulence closure model. (Similar doubts were considered, along with the eradication 
of the logarithmic layer, by Neish & Smith 1988 for wake flow.) 

The fully turbulent separating-flow structure is tackled theoretically here by a 
gradual build-up from the laminar regime. A turbulence-level gauge factor T is 
brought into the Cebeci-Smith model (see (1 .1)  below), such that the flow can be 
varied continuously from the laminar to the fully turbulent state by increasing T 
from zero to one. With the attached-flow strategy adopted initially, the first 
significant range of T encountered is then of order Re-i since that first affects the 
classical boundary layer. The breakdown associated with the Goldstein ( 1948) 
singularity is found to be forced towards the trailing edge, from its original laminar 
position, as the parameter R&T is increased. This comes from computations on the 
circular-cylinder case ($ 2) and from analysis ($3) of the interesting multi-structured 
flow properties developing a t  large ReiT, the two approaches showing good 
agreement. The breakdown position approaches the trailing edge or rear stagnation 
point asymptotically, albeit in an approximately logarithmic fashion ; and the 
boundary layer develops a two-tiered format, with its displacement thickness 
becoming singular a t  the onset of the trailing edge, prior to the breakdown. These 
findings lead on to the proposal in $ 5  for fully turbulent flow. 

With a quite different, separated-flow strategy as the starting point instead ($4), 
a similar overall trend is observed as T is increased. The breakaway-separation 
position is found to be pushed downstream from the laminar-flow value, and the 
eddy size decreases, eventually producing a collapse around the trailing edge. This is 
due mainly to the enhancement of the wall shear stress just ahead of the separation 
process, as T increases. 

The fully turbulent flow theory, and discussions, in $ 5 ,  then take up the 
suggestions from $ $ 2 4  (see also figure l ) ,  with the parameter T increased to unity 
as required. The flow structure and scales are implied directly by those of $ 3  in fact, 
and over most of the body there is a standard, attached, two-tiered turbulent 
boundary layer. This is able to stay attached right from the leading edge to  the verge 
of the trailing edge, even for a circular cylinder, because the Goldstein breakdown 
can no longer occur in that interval (cf. $3). The outer small-velocity-deficit tier 
thickens in singular fashion just prior to the trailing edge, such that a small non- 
slender zone of dimensions approximately O(u) I,) is brought into operation locally. 
(Here u, is the non-dimensional friction velocity and I ,  is the global lengthscale, e.g. 
airfoil chord.) The flow there is controlled predominantly by a nonlinear balance 
between inertial, induced pressure-gradient, and turbulent-stress forces, the velocity 
deficit is no longer small, and so the modelling of all the turbulence stress terms 
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becomes crucial. In  addition, an unknown slip velocity is thereby induced near the 
body surface (see also the Appendix), provoking a laminar-turbulent stress sublayer 
at the surface, and (as in $3)  the logarithmic near-surface behaviour is eradicated 
locally. This structure, including embedded sublayers, is believed to control the final 
stages of any separation present. The separation eddy may be confined locally, or 
extend as a slender layer into the relatively thin wake, or indeed be completely 
absent ; but the principal conclusion here is that large-scale separation need not occur 
at all (with this closure model and similar ones (see Neish 1988), at large Reynolds 
numbers (see also later)), since the majority of the motion can remain attached. 
Separation, if any, is forced by the external flow for example reaching a stagnation 
point or altering abruptly, rather than gently as in the laminar regime, and the 
typical streamline slopes involved near turbulent separation are O( 1). See also 
comments on numerical values in thc last paragraph of this sect' 1 ion. 

The Cebeci-Smith model taken here is widely used and its governing equations 
may be written in non-dimensional form as 

where 

au au 
ax aij 
-+- = 0. 

for ij> gl(x): 

tx = 
for 0 d t j  < tj,(x). 

( l . la)  

( 1 . l b )  

( l . l c )  

( l . l d )  

The constant a5 ( =  a3a;') = 0.105, after the transformation in Neish & Smith to 
absorb the usual constants a, = 0.16, a2 = 26, a3 = 0.0168, and in general the 
junction &(x) is to be determined from the conditions of continuity of the velocity, 
the shear and the eddy viscosity. A slenderness version is used at this stage (cf. $5), 
so that app/ay = 0 in effect, and 8 = u, S where 

S =  Joz (l-U/U,)dy 

is the unknown displacement thickness. Also, B = 1 -exp ( - a ,  Re u,g) where 
a6( = a;'a;f) = 0.096 15. The coordinates x, ij are tangential and normal to the body 
surface in turn, the corresponding velocity components are u, C, the pressure is p ,  and 
the airfoil chord (or cylinder radius) and the free-stream speed are both unity, in the 
present non-dimensional terms. The parameter T introduced is unity in the fully 
turbulent modelled flow and zero for laminar motion, while in $42, 3 we set T = R P - ~ T  
initially. Many other developed closure models, we note, are similar to the 
Cebeci-Smith one (see the discussion in Neish 1988). and hcnce the conclusion a t  the 
end of the previous paragraph applies equally well to them. 

Given that conclusion, it might well be argued that the major deficiency in the 
whole subject is still the ignorance over a closure model relevant during separation. 
(A referee kindly points out the works by Newley (1986), Weng, Carruthers & Perkins 
(1988), Belcher et al. (1990) suggesting the importance of pressure-gradient effects.) 
We tend to support that  view but, again, it could well be that our conclusion above 
is correct anyway for any relevant model. The nominally small separation length 
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cc uj (near the trailing edge) for instance appears to make sense in practical terms 
at  finite Reynolds numbers. Typically u, is about 0.2, and so the separation length is 
about 0.45, i.e. separation could occur a t  approximately 55 YO chord. Further 
comments are presented in $5, including a note on computational evidence from 
Barnett & Carter (1986) (see also Neish 1988) tending to support the present 
conclusion, although firm experimental evidence seems to  be lacking, as mentioned 
earlier. Remarks on and comparisons with the work of Sychev & Sychev (1980) and 
Sychev (1987), with whom there are fundamental differences, and Melnik (1989) (who 
suggests a two-parameter rather than the present one-parameter approach) and 
Deriat & Guiraud (1986), are also made in $5, with special note being made of the slip 
velocity induced within the turbulent boundary layer locally near separation 
according to the present theory. 

2. Properties for turbulence parameter ReiT of order unity 
The theoretical study described below is on two-dimensional turbulence-modelled 

separation and follows on from that in Neish & Smith (1988) on turbulent wake flow. 
The aim is to understand in an asymptotic sense the nature of such separation when 
a representative and much-used turbulence model is taken throughout, for quasi- 
steady turbulent flow, and to judge whether the separation properties thus predicted 
are sensible or not. 

The specific turbulence model chosen is the Cebeci-Smith one (see $ 1). With that 
model, and adopting here the artificial ' turbulcncc-level ' parameter T(  = ReiT) 
introduced in $ 1,  we address first the classical non-interactive boundary layer 
assumed on a thick airfoil, i.e. the composite scaled system consisting of 

= a$/ay, = -a$/ax, (2 . la)  

au au 
ax ay u-+w-= for 0 < y < y,(x), (2 . lb )  

and u =  v =  0 a t  y = O ,  u+u,(x) as y-tco. (2 . lc )  

Here u,(x) is the prescribed edge velocity given by the assumed attached inviscid 
solution, ( g ,  V) = Re-i(y, v) are scaled on Re-x, as are Band the junction position, and, 
due to  the y-scaling, the term B is unity in the present setting (cf. $5), while the whole 
term cc T is replaced by a diffusive term in the usual way for y > yl(x) ; see (1 .1  c) 
above. The parameter T is taken to be O(1) a t  first here, although i t  is raised to  its 
correct large size subsequently in $5. For the specific case of flow past a circular 
cylinder (figure l),  where in effect u,(x) cc sin nx, 0 < x < 1, computational solutions 
are described below, our particular interest being in the flow properties for increasing 
values of T. 

To accommodate the stagnation point a t  the leading edge x = O +  we put 

$k=x?j; u=x.ii; 7 = x ? ;  u,=xa,; s = x i  (2.2) 
(where 7 = au/ay and 8 now incorporates an Re-i factor) and seek computational 
solutions for the tilde variables in 0 < x < 1,  where x = 1 defines the trailing edge. So 
the equations to  be solved become 

(2.3a, b )  

( 2 . 3 ~ )  
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FIQURE 1. Schematic diagram concerning turbulent flow past a bluff body (circular cylinder). (a ) ,  
( b )  The effects of increasing the turbulence factor, starting from laminar flow, with ( a )  an attached 
boundary-layer assumption ( @ Z ,  3). ( b )  separating flow ($4). The solid arrows indicate the 
movement of the breakdown position xu and the breakaway-separation position x,, as the 
turbulence factor increases. (c) The resulting flow structure implied for fully turbulent flow, 
discussed in $5. 

in the inner Cebeci-Smith form, the outer model having the turbulent-stress term 
replaced by Tx(a/ay) [a5 &]. The boundary conditions here are 

( 2 . 3 d ,  e )  $ = 6 = O  a t  y = O .  6 + S ,  as y + m ,  

for no slip a t  the surface, and for the outer-edge constraint respectively. Here 
6, = sinxx/(xx) for 0 < x d 1 with u',(O) = 1 so that u, = xu', has the required 
stagnation form at  x = 0 , i .  

Computational solutions of (2.3a-e) were obtained by means of a forward- 
marching Keller-box scheme, with locally uniform spacings Ax, Ay in x, y in adjoining 
parts of the computational domain 0 d x d 1, 0 d y < yE,  where yE is the upper 
edge. In the method, ( 2 . 3 ~ - c )  are replaced by 

i4YlI2 = (&Y-&T-l)/A~, ?jR_l/z = (GT-u'in_l)/Ay, ( 2 . 4 ~ ,  b )  

- 
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FIGURE 2. Computed wall shear stress, ( a )  7, and ( 6 )  7, = x?,, ws. r for increasing values of T, 
showing the (slow) movement of the breakdown position rG towards the trailing edge at z = 1 .  

(and similarly for the outer model), the centring in (2.4a,b) being at x,, y5-1,2 as 
opposed to x , - ~ , ~ ,  Y , - ~ , ~  in ( 2 . 4 ~ ) .  Here in effect x, = (n- 1)  Ax, y5 = (i- 1) Ay define 
the grid points in each part of the domain, yE = ( J -  1 )  Ay, and affices n, j refer to 
the function values a t  x,, y5, while n-t, j-$ refer to the averages of n, n- 1 and 
j ,  j- 1 values. The different parts involved correspond to different grid spacings Ay, 
finest near the surface (i = 1,  y = 0 ) ,  coarsest towards the upper edge, and medium 
in-between, and similarly for the x spacing. Given the solution at the station 
x = x n P l ,  the nonlinear equations (2.4a-c) along with the appropriate constraints at  
j = 1, j = J enable the solution at the next station x = x, to be determined 
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iteratively to within a given tolerancc. A Newton iterative approach, requiring 
inversion of a diagonally banded matrix to fix the Newton increments a t  each 
iteration, is used at  that stage. A similar approach is taken a t  the front stagnation 
point x = 0, where the computations start, with ( 2 . 3 ~ - e )  yielding an ordinary 
differential problem then. Hence the scheme can be marched forward in x, with the 
solution a t  x,-~ being used as the initial guess for the x, solution and so on. Further 
details of this and below are given by Neish (1988). 

The typical grid employed has Ax = 0.01,0.02,0.01 in the x-intervals (0,0.2), (0.2, 
0.4), (0.4, 1 )  respectively, and Ay = 0.01, 0.1, 0.5 in the y-ranges (0,0.5), (0.5, 5 ) ,  (5, 
10) in turn. The reasons for taking this type of distribution are based mainly on the 
multi-structured nature of the solution that is found to emerge a t  large T. Again, the 
effects on the results of increasing yE from 10, in the above grid, to 15, were found 
to be insignificant, and similar tests are described in the last reference above. 

Results are presented in figures 2-7 for the wall shear stress 7, versus x, 7, versus 
T ,  xG versus T ,  velocity profiles, a close-up of the velocity profiles, and displacement 
thicknesses versus x, respectively. Here x = xG denotes the breakdown position of the 
boundary layer, at which the Goldstein (1948) singularity is encountered in the 
adverse pressure gradient over the rear half of the cylinder. It can be readily shown 
that Goldstein’s theory and in particular its prediction of a square-root singularity, 
7, oc (x,-x)f as z+x;, still apply to the turbulence-modelled equations (2.1) or 
(2.3). The dependence of xG on T ,  however, is of much interest. 

In more detail, figure 2(a ,  b )  presents plots of the wall shear stress ?, and 7, 
against x for each value of T considered. Each plot has a common value at x = 0 since 
there the flow is laminar and T has no effect. The graphs clearly show increasing wall 
shear strcss overall for increasing turbulence factor T ,  which is as expected from 
experimental evidence, and also the Goldstein point of zero wall shear stress moves 
towards the trailing edge, x = 1, for T increasing, away from the point of laminar 
separation for T = 0. It is also interesting to note, on the other hand, that the zero- 
wall-shear-stress point moves only relatively slowly towards the trailing edge as the 
turbulence factor is increased to quite high levels. Edge effects hindered the 
calculations for values of T larger than 100, well before the zero-wall-shear-stress 
point was reached in such cases. 

Figure 3(a,  b )  shows plots of 7, against T ,  a t  the stations x = 0.3 and 0.4 
respectively, in order to check the analytical predictions in the following section. 
Accurate solutions for all values of T are obtained a t  these stations, away from the 
stagnation point where tiny oscillations found in the results, due to the introduction 
of turbulence just after the leading edge, have most effect. Drawn on to the graphs 
are straight lines t o  demonstrate that  the plots are close to linear, in anticipation of 
(3.7) below for large T .  

Figure 4 presents the calculated zero-wall-shear-stress position xG, against T,  
denoted by x , and also the solid-line prediction for the position xG from $3  below. 
This indicates the slow movement of the zero-wall-shear-stress point towards the 
trailing edge, x = 1, as the turbulence factor is increased. This is discussed more later. 

Further, figure 5(u-j) shows the velocity profiles for T = 0, 20, 100,  at the points 
x = 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.66. It is of interest to examine figure 
5 ( d )  for x = 0.4 since this shows distinctly the difference between the laminar and the 
turbulent boundary-layer profile, even though the boundary layer there is still under 
the influence of a favourable pressure gradient. Clearly the turbulent boundary layer 
is thicker in comparison, and in the majority of the flow it has a lower velocity, 
although near the wall the velocity is increased in comparison, within a small layer, 
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FIGURE 4. The calculated zero-wall-shear-strew position xG, denoted by crosses, plotted against 
T, and the solid line prediction for xG from $3. 



452 

10 - 
(4 

Y -  

A .  Neish and F .  T .  Smith 

10 

Y 

0 

10 

Y 

0 

10 

Y 

1 0  1 0  1 
U 

I 
10 

(4 

ly 1 0  

U 

10 

A 

U 

U 

I 
10 

(4 

ly 1 0  L 1 

U U 

FIGURE 5. Calculated velocity profiles at x = 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55 in (a-g) respectively 
for T = 0, 20, 100; at z = 0.6 in (h)  for T = 20, 100 only; and at x = 0.65 and 0.66 in (i) and 0’) 
respectively for T = 100 only. The arrows indicate increasing T. Note the possible resemblance to 
a Coles wake form near separation for large T in ( i )  and 0’). 

giving increased shear stress a t  the wall. Figures 5 (a)-5 (9) clearly show a thickening 
boundary layer for T = 0, the laminar case, and 5 ( g )  gives a typical profile 
approaching separation with a point of inflexion at about y = 2.0.  Figures 5 (a)-5(h) 
show the typically thicker turbulent boundary layer for T = 20, thickening greatly 
as separation nears in figure 5 (h) .  The plots for T = 100 are in evident agreement 
with the expected trends as the turbulence factor is increased and have a possible 
resemblance to a Coles wake form near separation in figures 5 ( i )  and 5 0’) at 2 = 0.65 
and 0.66 respectively. To emphasize the structure emerging near the wall at large T, 
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3. Behaviour at large Re@’, and comparisons 
Guided by the computational findings of 52, we turn now to the large-T response 

of the turbulent boundary layer in (2. l), in order to approach the fully turbulent case 
(see $5). It is found below that the boundary layer takes on the classical turbulent 
two-tiered form rather than the original laminar form. The proposed large-T 
structure is represented in figure 8(a) ,  where the thickness scaling 8 is to be 
determined. The outer tier I of thickness O(1) is found to have the usual turbulent 
stress-inertial balance of forces, to leading order, and the inner tier I1 of thickness 
of order E‘ (to be determined) has a turbulent-laminar stress balance to leading order. 

In the outer tier I we set y = 1$ and expand 

u = u,+dzi,+ ..., (3.1) 
where the unknown scale A < 1 for large T. Then a turbulent-inertial balance is 
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4 -  

s 

8 

I 1 

8 

0 1 
I I 

0 1 

giving the inertial-turbulent stress balance, provided that TA = 2. Here the 
continuity equation is used, uL+av/ag = 0, to give v = -QuL in (3.2). The boundary 
conditions are now 

$,-u,[lnfj+L,(x)] as g + O + ,  d,+O as g + m ,  (3.3) 
and y1 = &jl defines the Cebeci-Smith junction point. 

u = 64, + . . . . So to leading order the laminar-turbulent stress-balance equation 
In the inner tier 11, in contrast, y = lij and a classical sublayer emerges, with 

is generated, provided that TAl = 1. We also have the usual logarithmic matching 
condition and the no-slip wall condition, 

iZ, - u,[lng+k,(x)] as g + m ,  El  = 0 at g = O .  (3.5) 
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FIQURE 8. Schematic diagrams of (a) the undisturbed turbulent boundary layer structure for large 
T, with outer tier I thickness O(2) having a turbulent stress-inertial balance of forces to leading 
order, and inner tier I1 thickness O(C?) having a turbulent-laminar-stress balance to leading order ; 
( b )  the structures I' and 11' implied by the stagnation point flow analysis, and the second new inner 
tier 11" where the boundary-layer equations hold and a Goldstein singularity is found to occur. 

There are now two relations between the three unknowns 6, E ,  A .  The third relation 
follows from matching the velocity between the inner and outer tiers, which requires 
d In (Z/Td) = - 1. Hence we have 

T=2Clnd, E=P1, d =$(lnd)-l, (3.6 a*) 

A major consequence of the inner-tier form is the near-linear prediction for the wall 
results which are consistent with the assumptions made above. 

shear stress, 

(3.7) 
k 

In d 
T N -  a t  large T, 

from (3.63, c). This prediction is compared with the earlier described computations 
in figure 3. 

Further, integration of the outer-tier equations (3.2) with respect to $, from 0 to 
infinity, yields the result (ut8)' = ut at each x, where the prime again stands for 
d/dx. Hence 

uE8= [u:dx, ( 3 . 8 ~ )  

since u:8is zero at the leading edge x = 0. In  particular the integral term on the right- 
hand side of ( 3 . 8 ~ )  approaches a constant value, E say, as x+ 1-  at the trailing 
edge/rear stagnation point for a finite body, which is of most concern here. So, for 
the flow past a circular cylinder, where we have u, N A( 1-2) as x+ 1 - with A a 
positive constant, the displacement function 

8% E h - 2 ( 1 - ~ ) - 2  (3.8b)  

grows as expected as the trailing edge is approached. This result can now be 
used to guide the x+ 1 - behaviour of i1. By an order-of-magnitude argument 
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8- Zi, $, giving Zi, $ - IXI-2 as X = x- 1 --f 0- . The dominant inertial-turbulent 
balance in (3.2) also suggests the orders of magnitude Zi, N 4;i-l N GllXl-2$-2, so 
that Zi, - $ - 1XI-l approximately. In more accurate terms we must introduce a 
similarity variable q for 1x1 -+ 0 given by q = $lXlL, so that Q - IXI-lL-l, where L(Bl) 
is an unknown but slowly varying function of 1x1 compared with powers of 1x1. 
Then the velocity expands as 

Zi, = lXl-lLfo(q)+ ... ( 3 . 9 4  

in order to preserve the above balance. The largest terms in the governing equations 
then are of order IXI-IL and cancel automatically. At the next order (L') we obtain 
the equation@) 

a 
JXI-'L3 - [qyi2] for 0 < q < v,, 

(3.9b) 

where So = EA-2 and 7, corresponds in the q-variable to the CebeciSmith junction 
8, in the $-variable. Thus there is an inertial-turbulent balance if L' = IXI-'L3, so 
that 

which satisfies the slowly varying assumption on L. For interest, the solution of the 
outer problem in (3.9b) is obtained by integrating once with respect to q to give 
-Aqfo = a,S,A, using the large-q condition that fo vanishes faster than 7-l 
(otherwise it is found that the velocity term 'li, exhibits algebraic decay cc $-l at all 
x, including near the leading edge, which is unrealistic). Integrating once more yields 

( a,S,L31XI-'f; aq for 7 > yl, 
-L'hIfO+qf;] = 

L = ( - 2 l n ~ l ) - t ,  (3.9c) 

the solution 
fo=-Aoexp -- ( 2:;) (3.10a) 

which gives exponential decay for large q as required. Similarly, for the inner 
problem, integrating once now gives -hqfo = q2A2, since the constant of integration 
is zero, by continuity at the junction 7,. This yields the inner solution 

f, = -(-htqi+A,)2 (3.10b) 

with continuity between ( 3 . 1 0 ~ ~  b)  at  q,.  These solutions can be shown to confirm the 
small - 1x1 behaviour of & in (3.8 b). 

Thus the small 1x1 behaviours of Zil and Q are predicted to be 

4, - lXl-'(-21nIXI)-tfo(q)+ ..., 8 -  ~X~-1(-21n~X~)~,  (3.11a, b) 

as 1x1 -+ 0. These responses can also be found by a transformation described in Neish 
(1988). 

Closer to the trailing edge, however, the first two terms in the velocity expansion 
for the outer tier I become of equal magnitude. Balancing these terms as 

Ix-ll= IXJ+O 

gives 
order y 4 1, say, where y is given by 

- dlXI-'( -2 In IXl)-i. Recalling (3.6c), then, the balance occurs when 1x1 is 

- y4 In y = i(1n t)-2. (3.12) 

This defines a new region where new physics governs the flow. It can be seen 
schematically in figure 8(b), denoted by 1', where this region is extensive in the y- 
direction compared with the original classical outer tier I. The inner tier expands into 
a new region 11', also at distance O(y)  from the rear stagnation point. 

In  region 1', the rescaling x- 1 = X = y z  holds and u = yu*+ ..., say, since 
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u, - AlXJ as X + 0, the new expanded y-scale can be established from (3.11 b), for then 
in 1’, where z is of order 1, y - 2y-l( -2 In y)i. Here (-2 In y); = Ay+, and so we scale 
the new y-coordinate as y = 2 A ~ - ~ y * ,  while by continuity v = 2Ay-2v*+ ... . With 
these scalings the governing equation for the flow I’ is nonlinear inertia/pressure- 
dominated, 

( 3 . 1 3 ~ )  

to leading order, together with continuity, and the significant point is that the 
velocity deficit is no longer small. Hence u * ~  - A21q2 is constant along a streamline in 
1’. In particular along y* = O+ we have a non-zero slip velocity us*, where 

Us*2-A21.12 = 2c, (3.13b) 

with the constant C to be determined, since y* = O+ is a streamline for this attached 
flow region. Breakdown occurs where the slip velocity vanishes and so, using (3.13b), 
we find a value for z at the breakdown point (zs say in scaled coordinates, 2, in O( 1) 
body-scale coordinates), i.e. 1zS1 = ( -2C/A2)i. The constant C however can be found 
by matching upstream to the oncoming two-tiered structure (see earlier) where 1.1 is 
large. There the velocity has the form 

U: - Aid+ Id-lG0(7) + I Z I - ~ G ~ ( ~ )  + . . ., (3.14a) 

where 7 = y*Id. Substitution into ( 3 . 1 3 ~ )  gives nothing at orders 1.1 and since 
all terms there cancel, but at order I$3 gives an equation for G,(v) in terms of G,,(v). 
Subsequently Go can be found by matching to the (earlier) oncoming classical 
solution as (l-z)+O. Also, then, on y* = 0, we have from (3.14a) that 
u,* = A14 + ld-lG0(7) + . . . , which at u: = 0 yields 

Izs1 = (-G,(O)/A);. (3.14 b) 

This determines the constant C = $IGo(0) in terms of the upstream solution. The 
boundary conditions for (3.13a) are then 

u*-uQ* as y*+O, u*-+Ald as y*+m. 

The solution in region 11’ can be found using the behaviours found earlier for 11, 
where the turbulenblaminar stress balance in (3.4) gives G1g - 1. Hence g expands 
as IXI-l, so that ill - 1x1. Then within the new scale X = yz, the velocity expansion 
becomes u = Ayg + . . . and the y-scaling and, by continuity, w-scaling are y = C’y-ly”, 
v = Ab-ly-l$+. . . . The governing equation in 11‘ is therefore 

( 3 . 1 5 ~ )  

so that the dominant physics in the inner tier remains unchanged. This also tends to 
confirm that the velocity-expansion breakdown in region I is the first physical 
change in the system, aa the trailing edge is approached, and that no other new 
developments have been missed at an earlier stage further upstream. The boundary 
conditions in 11’ are 

4 -u~( In$+O(I ) )  as y”+m, $ = o  at # =  0. (3.15b) 
The flow solutions in regions 1’, 11’ match as required, and we note that a first 
integral of (3.15a), with (3.15b), gives 

(3.15 c) 

from which the shear %/ay” and hence the velocity 4 can be found explicitly. 
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FIQURE 9. The construction used to determine the scales of inner tier 11" where O(&) O(y) .  

Returning to  the solution in I' as z+zS from upstream, we have the property that 

U , * K A @  as <+o ,  (3.16) 

where = z ~ - x .  Thus the solution has a square-root singularity (in distance) as 
breakdown is approached. This is different from the Goldstein singularity, however, 
which requires (see below) another region where the boundary-layer equations hold 
near the wall, denoted in figure 8 by 11". Thus turbulent breakdown is governed first 
by the outer tiers I, I', which determine the position of the zero slip velocity and the 
form of the solution there. The inner tiers 11 and 11' serve only to modify the velocity 
profile near the wall, from the outer-tier slip to the no-slip condition a t  the wall. The 
inner tier II", where the boundary-layer equations are found to hold, is here driven 
purely by the slip velocity induced in 1'. 

For region 11" we examine the variation of the quantities in II', with 6 small, under 
the influence of the slip velocity u,*. The velocity 2 in 11' is driven by the large-; 
condition in (3.15b), so that ? = %/a; - l€Ji$-' for large $. The laminar-turbulent 
stress balance gives ?p - 1 in addition, and hence 5 - 6 - 5 ,  12 - @, ? - 6 as t + O .  To 
determine the scales of 11" we make use of the construction shown in figure 9. The 
boundary-layer equations are assumed to  hold in 11" which has x-scale p (say) 
measured upstream from the zero velocity point, where x = pLz, and p < y. The scale 
of the distance from the onset of the l', 11' regions to  the u,* = 0 point, zS, is taken 
to be Pp, so that X = Pp2 there and P 9 1, Pp Q y.  

Then in the p-scale, < is of order p l y ,  since it is based on Z, and so a t  the 
&-scale 6 is of order @ply. Orders of magnitude for the quantities in zone 11" are 
thus given by u - A y p ; ,  y - ay-lg, based on the 11' scalings. Assuming that Pp 4 y ,  
region 11" lies close to the x - y point. Then the pressure gradient in 11", 
based on the boundary-layer edge velocity u,, is still of order y as in regions I', 11'; 
for the zero-slip-velocity point lies a t  a distance from x = 1 given by y-Pp - y. 
Balancing inertial, turbulent, and viscous terms with this pressure gradient gives 

(3.17) 

This gives the boundary-layer equations in 11" where the Goldstein singularity occurs 
(x = xG). The scalings are self-consistent in that p is very small, Pp = d 2 y  is small 
compared with y ,  and P 9 1. 

One prediction, then, is that the breakdown point, where the slip velocity reaches 
zero, and which coincides with the Goldstein breakdown position x = xG to leading 
order, is a t  a distance 

Y(1 - A 2 )  (3.18) 

1 -  

A2y2P'p-I - 22Ay3pt - $-Ay2pI  - y ,  i.e. 
P=$Aiy i ,  y =  8 *-;A; y-;. 
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from the rear stagnation point. Since the zero-slip-velocity point, indicating 
breakdown, lies at a distance from the rear stagnation point dependent logari- 
thmically on T, its movement towards the stagnation point is very slow as T is 
increased. In  region 11” the scales arc 

lx-x,I = E“$&-t,-, y = ;-&-ty=, u = ;-:A$ y 4 u+ = ... ( 3 . 1 9 ~ )  

we note, with the leading-order governing equation being 

(3.19b) 

i.e. the full original system is recovered. 
The principal extra comparison to be noted (see also earlier comparisons), between 

the numerical work of $2 and the present large-T theory, is therefore for the 
breakdown position x = xG ; see figure 4,  where the crosses denote numerical results 
and the solid line is the large-T asymptotic prediction. For the smaller values of T 
the calculated positions are rather remote from the theory, but for the larger values 
of T the agreement is very close in terms of both the position and the speed at which 
the breakdown point moves towards the trailing edge. We observe the very slow rate 
at which this movement occurs; indeed, even for T = 100 the present theory predicts 
breakdown at approximately 0.665 (see also comments elsewhere concerning 
practical values). 

4. Build-up from large-scale separated flow 
An approach alternative to that in $92, 3 is adopted here, with large-scale 

separation being assumed at the outset in the laminar-flow case at T = 0, for the 
motion past a thick airfoil or circular cylinder again. See figure 1 .  The effects of 
increasing T from zero are then examined. 

Extended Kirchoff free-streamline theory is taken to provide the underlying model 
at zero T, although similar conclusions hold for related models: see Smith (1979, 
1985). On either side of the separation, at x = xo say, we therefore have 

p - -i(xo - x); as x + xi, ( 4 . 1 ~ )  

S-$(X-X~)~ as x+x,+, (4 .16)  

with p = 0 for x > xo, and 1; a positive constant, where p ,  S denote the surfacelfree- 
streamline pressure and the separated eddy thickness, respectively. The eddy’s 
pressure and velocities are o(1) throughout, while its length is O(Re) and its 
maximum width is O(Re;); see also the references above. Of most concern here 
however is the behaviour near the separation point, as the boundary layer breaks 
away. A triple-deck structure describes the separation process there, occurring 
throu h ressurdisplacement interaction locally within the distance 12- xoI = 
O(Re-sh-a), where h is the O( 1 )  wall-shear-stress factor of the oncoming boundary 
layer. This requires I; to be O(Re-h) (Sychev 1972), corresponding to smooth 
separation, and as a result (4.1 b) is adjusted to the form 

with a, P being O(1) constants (a x 0.44, Smith 1977). Solutions satisfying the 
viscous requirement (4.2) are described in the references above, where among other 
things it is found that the theory can work well in numerical terms at  finite Re. 

The main effect of introducing the turbulent influence T into the overall motion is 
felt via the triple-deck local process of separation. In essence, increasing T provokes 

# P  

s - ~hBRe-~(z-x,)f+P(x-x,)I+ ... , (4 .2)  
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increasing wall-shear-stress factors h (see $02, 3) and hence accentuates the first 
contribution in (4.2), as well as decreasing the triple-deck lengthscale. (This, we note, 
is akin to a decrease in the Reynolds number, in (4.2)). While T is in the O(1) range, 
however, h remains O( 1 )  also and so the smooth-separation criterion, represented by 
the term in B in (4.2), remains undisturbed to leading order ; this corresponds to the 
55" separation position for Kirchhoff theory applied to the circular cylinder. To 
disturb the smooth-separation result, h must be increased to the order Re&, as must 
T approximately, in view of the theory in $3. 

The same estimate for T ,  h results from comparing the triple-deck lateral extent 
(O(Re-t h-g), equal to its streamwise extent) with the increasing turbulent boundary- 
layer thickness, which is O(Re&T) from $3. The two are of equal order when 

approximately, given (3.7) for the dependence of 4 on T at large T .  
It can now be verified that the laminar triple-deck structure around separation 

remains intact when (4.3) holds, despite the enlarged level of turbulence present. The 
three decks of the structure have y-scales of orders Red, Red, Re-f (upper, main, 
lower-deck respectively), in which the expressions 

A - T - R &  (4.3 1 

[ 1,  0, 01 + O(Re-;) (4.4a) 
[u, v, p ]  = [uo, 0, 01 + O(Re&, Re-), Re-;), (4.4b) 

apply in turn, and x - Red. These again yield the viscous-inviscid laminar 
separation problem of Smith (1977), since the extra turbulent-stress contributions 
remain small relative to the large O(Refi) adverse pressure gradient and laminar-stress 
forces provoked locally during the triple-deck interaction. Further, although the 
upper deck's y-scale now coincides with the O(Red) turbulent boundary-layer 
thickness, the typical potential-flow properties of the upper deck stay valid because 
of the small deficit of the oncoming turbulent velocity profile there: again see $3. 

In consequence, the local laminar requirement (4.2) continues to hold even in the 
increasingly turbulent regime of (4.3) ; the factor AtRed is simply replaced by /ii, 
where h = Re-hh is O(1) .  Thus the breakaway separation becomes non-smooth now, 
which is the major new feature, and in effect 

(4.5) 
in (4.1 b), with cc f' = R e d  T of order unity. Increasing the turbulence factor T then 
increases h and hence I;, which drives the breakaway-separation position xo 
downstream along the surface, reducing the eddy length and width, as well as the 
0(1) drag cD; That trend continues until a t  a critical O(1) value i = 1;, (where 
9 = ?,, A = A,) the drag cD tends to zero and xo+xoc - say. This coincides with a 
collapse of the large-eddy structure, similar to that in Cheng & Smith (1982). For 
I;-values exceeding I;, (and f' > pc) the eddy length is smaller, of o( i ) ,  with an eddy 
structure like that in the last reference or with a uniform-vorticity recirculating flow 
(see references above). In either case, as I; continues to increase, the eddy size is 
almost certain to continue decreasing and the separation position to approa_ch the 
trailing edge, essentially as in Cheng & Smith (1982), and xo + 1 - as + co , T+ co , 
A+m. So the same conclusion as in $3 is obtained, but from a different starting 
point ; namely, that increasing the turbulence factor forces the separation towards 
the trailing edge, reaching the trailing edge asymptotically at large 9. 

It is interesting also that formally as T increases further, towards its fully 
turbulent value of order Re;, the triple-deck structure condenses further. The next 

( [O(Red, Re-+, Re-;)] (4.4c) 

*B I; = aha 
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distinct physical change to occur for large T is when the lower tier of the triple deck 
and the turbulent-boundary-layer inner tier, of thickness O(Re-i T'), become of 
equal magnitude. Since the lower deck has thickness of order Re-iA-a, this occurs 
when T - Re;, i.e. exactly in the fully turbulent case. At  this scaling of the turbulence 
factor the upper and main decks of the triple-deck structure also collapse into the 
lower deck, and so we have a new single 'square' structure of dimensions Re-'. 
Simultaneously the velocities u, v and the pressure p all become of 0(1), and so all 
the terms in the Navier-Stokes equations balance to leading order, i.e. we recover a 
small Navier-Stokes zone (see also Neish 1988). Since in this zone x, y are of equal 
order, terms in the Reynolds-averaged Navier-Stokes equations originally neglected, 
i.e. the turbulence terms Tx., Tuu can also become important at leading order, 
requiring new types of turbulence modelling for these terms. Also in this zone the 
flow may turn through 0(1) angles, e.g. separate, requiring modification of the 
original turbulence models taken, since they are based on flow mainly in the x- 
direction parallel to the surface. Similar features have also been observed in 
experimental investigations by Thompson & Whitelaw (1985) and Simpson et al. 
(1977), who find strong flow rotation near the mean-flow separation, with normal 
stresses becoming important there. 

A prominent feature of turbulent boundary-layer separation, then, seems to be 
that an 0(1 )  slope is required to provoke separation. In particular, the laminar flow 
past a wedge-shaped trailing edge can be studied in a fashion similar to the above. 
Figure 31 of Neish (1988) shows the flow configuration with a wedge having half- 
angle CL and trailing edge at  x = 0. The laminar theory (see e.g. Smith 1982) uses a 
triple-deck structure at  the trailing edge with the lower deck having thickness of' 
order Re-g A-f, and length of order Re-8 A-4, so that the half-angle has order Re-; At for 
separation to occur. Then as T increases towards its fully turbulent value Re; 
separation is provoked, from the above, by an angle of increasing magnitude, until 
at  T = O(Rei) the angle a associated with fully turbulent boundary-layer separation 
becomes of order 1. This appears to be in qualitative agreement with some 
calculations (Barnett & Carter 1986, and see below) and experiments, and connects 
up with the theory in the following section. 

5. Fully turbulent motion, and further discussion 
The behaviour for fully turbulent motion (T' = l),  past a bluff body or thick airfoil, 

suggested by the work in $824 is essentially that of attached non-interactive flow. 
Large-scale separation need not occur at all, at  least according to the assumed 
turbulence model. Given the attached-flow inviscid solution outside, the two-tiered 
turbulent boundary layer is definitely able to remain attached right from the leading 
edge x = 0 to the onset of the trailing edge x = 1. Its small-deficit outer tier has 
thickness O(u,), the inner stress sublayer has thickness O(u;lRe-l), with the friction 
velocity u, being of order (lnRe)-', and the resultant skin friction 7w K ui is bound 
to stay positive. Hence separation can be confined to the vicinity of the trailing edge 
x = 1 ; see also figure 1 (c). 

In more detail, and in line with the developments in $3, the two-tiered classical 
turbulent boundary layer for 0 < x < 1 has the expansions 

[u, @/el = [ue(x), 01 + € [ G I ,  e l ]  + e2 In e[G,,, 6,,] + e2[Gz, GZ]  + . . . , (5.1 a)  
[u,  81 = [ed,, Re-%,] + . . . , (5.1 b )  

in the outer and inner tiers respectively, with g = etj and g = e-lRe-'ij in turn. Here 
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B = (lnRe)-l is small, and p = $&x) + ~'$~(x) + . . . , where $; = - u, u:. The governing 
equations and matching conditions for Zi,, iZl are then effectively those in $3  (but with 
the term B now differing from unity in the inner tier, due to the g-scaling), the 
displacement thickness 

(5.2) J: - 
a(= u,6) = (u,-u)dg = s2(81+elns&,2L+s82+...) 

also follows, and u, = O(s)  + O(s2 In B )  can be worked out : see Neish & Smith (1988), 
Neish (1988). In  particular, the skin friction is proportional to 

(ailJay") (x, 0) = u: (5.3) 
(see also Townsend 1976) and so remains positive throughout, while the main 
displacement-thickness contribution is given by 

(5.4) 

see (3.8a). The result (5.3) stems from the integral version, 

jj2{l-exp(-a,y")}2(aiZ,/~y")2+(aiZl/ay") = u:, 

of the momentum equation (3.4) in the inner tier, with the factorB( += 1) incorporated 
and 6, = a6 u, e-l is O( 1) for 0 < x < 1.  

Hence, on approach to the trailing edge, where u,+O+ like A(1-x), (5.4) yields 
the growths 

8, -E/[A2(1-x)2], jj N (l-x)-l (5.5) 
in the displacement and the typical $-scale (see (3 .8b) ,  (3.9a), and also the Appendix 
which shows among other things that the slip-velocity correction 

k , (x )  = (G,-u,lnjj) (at  jj = 0) 

grows like (1 - x)-l as x -+ 1.  The corresponding externally induced pressure g2, given 
approximately by -: j: C U E )  (x- t)-l dE, 

therefore also grows, like ( 1 - x ) - ~ .  The typical boundary-layer slope, 8 djj/dz, then 
becomes of order unity when (1 - x) is small, of order ei close to the trailing edge, and 
at the same stage the induced pressure s2$2 - e2( 1 - x ) - ~  becomes comparable with 
the imposed pressure variation $,,-constant - (1 - x ) ~ .  So a new 'square ' structure 
comes into operation when 

x = l-O($). ( 5 . 6 ~ )  

An outer tier exists then, in which 

[u ,a ,p]  = [ d U , € b ,  €PI+ ...) g = €tP, (5 .6b)  

and the governing equations are 
u,+ v, = 0, ( 5 . 7 ~ )  

(5.7b) 
(5.7c) 

expressing a nonlinear inertial/turbulent-stress balance. Here x - 1 = dx. The 
solution of (5.7u-c) subject to the tangential-flow constraint V = 0 a t  P = O +  yields 
a slip velocity 

U+U,(X) ,  V + O  as F + o + .  (5-8)  
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This is also implied by the analysis in $3, in particular by (3 .11~)  with (3.10b) and 
by (3.13b), and by the result for k , ( z )  quoted just after (5.5). A thinner sublayer is 
thereby provoked, bringing in the laminar stresses, to reduce the velocity to zero at 
the surface as in $3. Again see the Appendix. A match with the oncoming boundary- 
layer solution is possible at large negative 1, where the vorticity dependence is 
introduced (again as in 53), but then the slip velocity Us can be expected to reduce 
to zero at  a finite value of X, around which separation takes place. The smallest 
region involved there is a Navier-Stokes zone of 5-, g-dimensions approximately 
O(Re-') as described by Neish (1988). The local flow structure can then produce a 
closed-eddy flow for example, given that the local turbulent-laminar stress sublayers 
which are invoked still tend to stay attached as in (5.1)-(5.5). Thus although the 
theory remains tentative of course (see also later) the prediction 

zsep = 1 -O(US) (5.9) 

(approximately) is implied, for the separation position relative to the trailing edge at  
x =  1.  

For comparison, a computational study of interest is by Barnett & Carter (1986) 
who use an interacting boundary-layer approach for turbulent flow past a NACA 
0014 airfoil. Separation and eddy-closure positions are calculated at various 
Reynolds numbers, and it is found that both positions move towards the trailing 
edge as the Reynolds number increases, with attached flow being predicted beyond 
a Reynolds number of about 2 x 10'. These trends agree with the present asymptotic 
theory. Further computations using various turbulence models are described by 
Arnold et al. (1989) and exhibit partly similar trends also. 

Another comparison concerns the induced slip velocity in the lower reaches of the 
outer tier of the turbulent boundary layer. This slip velocity, i.e. Zi, in $3 and U, in 
this section, comes into play non-trivially only within a small distance of separation, 
near the trailing edge, as the previously small o(1) velocity deficit becomes an O(1) 
deficit, in relative terms. This is in contrast with the suggestions of Sychev & Sychev 
(1980) and Sychev (1987) (see also Melnik 1989) who propose that such a slip velocity 
is produced within the chord-length boundary layer, unlike in (5.1a)ff. Their 
proposal, while interesting, seems questionable in our opinion mainly because a 
solution of the slip-affected outer-tier problem that arises in their work is simply 
u = u,(z),  as in (5.la) and as implied by the computations and analysis of $52, 3, and 
we believe that simple solution to be the general case unless extraneous forces impose 
a non-trivial slip velocity upstream. In addition the intermediate tier present in their 
suggestion is then unnecessary to the analysis, except near the trailing edge where 
the analogous tier is described in $3. Along with this, the present prediction of 
separation being focused near the trailing edge (see (5.9)), following the inverse- 
square displacement singularity of (5.5), is quite different from the previous theories 
above. We should also mention in passing here that the local inclusion of induced 
pressure-gradient effects, and the small-scale-separation zone governed by the 
Navier-Stokes equations, are addressed in more detail by Neish (1988) ; the small 
zone above yields, for weak disturbances, a Bessel-function dependence which is also 
found in a simultaneous study by Hunt et al. (1988). Likewise there are some links 
with theoretical work in progress on transition and turbulence dynamics, e.g. Smith, 
Doorly & Rothmayer (1990). 

Turbulence modelling for separating boundary layers is in a relatively weak state, 
as remarked in $1,  and that undoubtedly precludes forming a definite general 
conclusion on the separation position for instance. Nevertheless it is felt that the 
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present findings could well be correct for many separating flows and closure models. 
The separation distance of order ui in (5.9) for example makes sense in practical 
terms since ui is typically about 0 . 2 4 . 4  in the flow regimes of concern. Again, the 
present algebraic model taken reproduces the features found from more general 
models, e.g. in the references of the previous paragraph, and in Neish & Smith (1988) 
for wake flow. Finally, here, Deriat & Guiraud (1986) find an algebraic model to be 
essential for the correct description of the thin wall-layer flow and comment on its 
universality, even though adopting a k h  model for the rest of the flow ; again see 
also Neish (1988). 

The present conclusion, for the Cebeci-Smith model and its like, is that large-scale 
separation need not occur, and if it  does it is forced by the external flow for example 
reaching a stagnation point or altering abruptly. This is as opposed to the gentle 
alteration associated with laminar separation. The main lengthscales involved in the 
turbulent separation are then O(ub), corresponding to the stagnation-point case. We 
observe that these scales could alter to O(u,) for instance in supersonic flow, notably 
for shock-wave/boundary-layer interaction, due to the suppressed upstream 
influence then (cf. the shrinking of the triple-deck structure described in $4). Further, 
the characteristic angle of separation is O( l ) ,  since the streamwise and normal 
lengthscales are comparable, and hence the modelling of all the turbulent stress 
terms plays an essential role. 

Helpful discussions with, and comments by, Professor T. C. Adamson, Dr 
M. Barnett, Mr S. P. Fiddes, Dr M. C. P.  Firmin, Professor J. C. R. Hunt, Dr 
R. E. Melnik, Mr J. H. B. Smith, Professor J. D. A. Walker and Dr M. J. Werle are 
gratefully acknowledged, as are useful comments by the referees and the support of 
A.N. from the Department of Trade and Industry, through R. A. E. Farnborough. 

Appendix. Fully turbulent motion, matching and the induced slip velocity 
In $5 we found a new ‘square ’ structure for the flow close to the trailing edge, with 

streamwise lengthscale given by ( 5 . 6 ~ ) .  This structure comprises an outer tier, with 
scalings (5.6b) and governing equations (5.7a-c), yielding a slip velocity (5.8) and a 
thinner tier or sublayer required to reduce the velocity to zero at the surface. The 
following gives, in some more detail, the matching normally between the outer tier 
and the sublayer, and streamwise between these two tiers and the upstream classical 
two-tiered boundary-layer (cf. §3), resulting in a non-zero slip velocity in the solution 
for the outer tier. 

Concerning first the classical outer tier, as the trailing edge is approached (5.6u, b ) ,  
(5.7u-c) follow immediately in the new outer tier. The solution of (5.7a-c) then gives, 
near the surface, 

However, the signs are that FIL(X) is identically zero. For the small-$ behaviour of 
the velocity in the upstream classical description, using (3.3), is 

U-F,,(X)InP+Fl(X) as P+O+. (A 1)  

u - u,+~[u,ln$+k,(z)]+ ... as $ + O + ,  (A 2) 

u - E ~ [ U , ( ~ ) + ~ ~ ( X ) ~ + E ~ [ U , ( X ) ~ ~ Y + O ( ~ ) ~ +  ... as Y + o + ,  (A 3) 

which becomes in the new outer tier 

where u, = due, k, = &El (with U,,E, of order unity). The latter derives from 
consideration of (3.3), (5.5) and from the property that the velocity deficit ‘li, grows 
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like (1 -z)-l typically as the trailing edge is approached ; balancing of the scales 
implies that k,(z) - (1 -z)-' and this dominates (3.3) as x+ 1,  i.e. the logarithmic 
part of the matching becomes negligible, being relegated to a higher-order effect, cf. 
the eradication of the logarithmic behaviour in Neish & Smith (1988), where a cusp- 
like velocity profile is produced instead. The leading-order term in (A 3) is a function 
of X only, and formally we may write it as €4 Us@),  defining the slip velocity for the 
solution to the new outer tier. Matching (A l),  (A 3) therefore to leading order is 
consistent with Fl,(X) = 0, and F1@) = Us@). 

Secondly, regarding the classical inner tier, this behaves in a similar fashion to that 
found in $3. Thus, a t  the streamwise lengthscale of (5.6a), the tier expands to become 
a new inner tier in which 

(A 4) 
8 -  

[u,a,p] = [ i d , R e - ' ~ t ~ , € P ] +  ..., q =  Re-ls-a !I, 
giving at  leading order a balance between the laminar and turbulent stresses, 

d,+p(g) ad = HIL(X), 

after a normal integration, where the term B is again unity due to the scaling (A 4). 
Solving we therefore find 

d-HIL(X); as ; + O + ,  (A 6 4  

d-HiL(X)In{+Hl(X) as ~ + . o o ,  (A 6b) 
so that the velocity does indeed reduce to zero at the surface. Matching with the 
classical inner tier upstream is straightforward. Writing (A 6 b) in terms of the earlier 
F-coordinate yields 

Matching with (A 1) again points to FIL(X)  being zero, and Hi,@) = Us(X) ,  the slip 
velocity. The fact that Us(X) is non-zero makes good sense in terms of (A 5)-(A 6b), 
and we note also that the skin friction now becomes proportional to q ( X ) ,  using 
(A 6a), rather than to UZ,. Hence the skin friction stays positive until the new induced 
slip velocity tends to zero (which within the present lengthscale can occur ahead of 
a stagnation point in the flow outside the square structure). 

u - d H ~ L ( X ) + d [ H ~ L ( X ) l n Y + O ( l ) ] +  ... as P+O+. (A 7) 
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